8. Crifò, C., Bargo, S.M., Cuitiño, J., Kay, R., Kohn, M., Trayler, R., Vizcaíno, S., Zucol, A., Strömberg, C.A.E., (in prep.), Habitat heterogeneity and vegetation response to the Middle Miocene Climatic Optimum in the Santa Cruz Formation (Patagonia). En révision.
7. Strömberg, C.A.E, Armos, B.**, Brightly, W., Crifò, C., Gallaher, K.T., Lavin, S.T.**, Lowe, A., Novello, A., Wilson, P.K., (in prep.). The utility of palm phytoliths for inferring the evolution and paleoecology of Arecaceae. En préparation
6. Crifò, C., Berrio, J.C., Boom A., Giraldo-Cañasc D., Bremond, L. (under review), A paleothermometer for the Northern Andes based on C3-C4 grass phytoliths. Paleobiology, 1-17. https://doi.org/10.1017/pab.2022.44
5. Crifò, C., and Strömberg, C.A.E., (2021). Spatial patterns of soil phytoliths in a wet vs. dry Neotropical forest: implications for paleoecology. Accepted for publication in Paleogeography, Paleoclimatology, Paleoecology. 562, 110100. https://doi.org/10.1016/j.palaeo.2020.110100
4. Crifò, C., and Strömberg, C.A.E. (2020). Small-scale spatial resolution of the soil phytolith record in a Neotropical rainforest and a dry forest in Costa Rica – applications to the deep-time fossil phytolith record. Paleogeography, Paleoclimatology, Paleoecology, 537, 109107. https://doi.org/10.1016/j.palaeo.2019.03.008
3. Baresch, A., Crifò, C., and Boyce, C.K., (2018). Competition for epidermal space in the evolution of leaves with high physiological rates. New Phytologist, 221, 628-639. https://doi:10.1111/nph.15476
2. Strömberg, C.A.E., Dunn, R.E., Crifò, C., Harris, E.B. (2018). Phytoliths in paleoecology: analytical considerations, current use, and future directions. In D.A. Croft, S.W. Simpson, and D.F. Su (eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer (Vertebrate Paleobiology and Paleoanthropology Series), Cham, Switzerland. https://doi.org/10.1007/978-3-319-94265-0_12
1. Crifò, C., Currano, E.D., Baresch, A., and Jaramillo, C., (2014). Variations in angiosperm leaf vein density have implications for interpreting life form in the fossil record. Geology 42(10): 919-922. https://doi:10.1130/G35828.1
7. Strömberg, C.A.E, Armos, B.**, Brightly, W., Crifò, C., Gallaher, K.T., Lavin, S.T.**, Lowe, A., Novello, A., Wilson, P.K., (in prep.). The utility of palm phytoliths for inferring the evolution and paleoecology of Arecaceae. En préparation
6. Crifò, C., Berrio, J.C., Boom A., Giraldo-Cañasc D., Bremond, L. (under review), A paleothermometer for the Northern Andes based on C3-C4 grass phytoliths. Paleobiology, 1-17. https://doi.org/10.1017/pab.2022.44
5. Crifò, C., and Strömberg, C.A.E., (2021). Spatial patterns of soil phytoliths in a wet vs. dry Neotropical forest: implications for paleoecology. Accepted for publication in Paleogeography, Paleoclimatology, Paleoecology. 562, 110100. https://doi.org/10.1016/j.palaeo.2020.110100
4. Crifò, C., and Strömberg, C.A.E. (2020). Small-scale spatial resolution of the soil phytolith record in a Neotropical rainforest and a dry forest in Costa Rica – applications to the deep-time fossil phytolith record. Paleogeography, Paleoclimatology, Paleoecology, 537, 109107. https://doi.org/10.1016/j.palaeo.2019.03.008
3. Baresch, A., Crifò, C., and Boyce, C.K., (2018). Competition for epidermal space in the evolution of leaves with high physiological rates. New Phytologist, 221, 628-639. https://doi:10.1111/nph.15476
2. Strömberg, C.A.E., Dunn, R.E., Crifò, C., Harris, E.B. (2018). Phytoliths in paleoecology: analytical considerations, current use, and future directions. In D.A. Croft, S.W. Simpson, and D.F. Su (eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer (Vertebrate Paleobiology and Paleoanthropology Series), Cham, Switzerland. https://doi.org/10.1007/978-3-319-94265-0_12
1. Crifò, C., Currano, E.D., Baresch, A., and Jaramillo, C., (2014). Variations in angiosperm leaf vein density have implications for interpreting life form in the fossil record. Geology 42(10): 919-922. https://doi:10.1130/G35828.1